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Existence and Stability of Steady Fronts in 
Bistable Coupled Map Lattices 

Bast ien  F e r n a n d e z  ~ 

Received March 30, 1995; final July 19. 1995 

We prove the existence and we study the stability of the kinklike fixed points in 
a simple coupled map lattice (CML) for which the local dynamics has two 
stable fixed points. The condition for the existence allows us to define a critical 
value of the coupling parameter where a (multi) generalized saddle-node bifur- 
cation occurs and destroys these solutions. An extension of the results to other 
CMLs in the same class is also displayed. Finally, we emphasize the property 
of spatial chaos for small coupling. 
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The dynamics  of localized structures is known to be one of the most  relevant  
features of  the extended dynamica l  systems. These par t icular  solut ions 
usually manifest themselves as solitons, interfaces, fronts, kinks,  or  domain  
walls separa t ing  two regions of  the space where the time evolut ion is homo-  
geneous (or  at least regular) ,  namely  the domains.  The kink p ropaga t ion  
in space is often invoked as a des tabi l iza t ion factor for the stable domains  
and is therefore designed to be the origin of  d isorder  in the underlying 
system. Wi th  the dynamics  of  spat ial  wavelenghts,  the kink dynamics  are 
thus the main  components  to be analyzed in the f ramework of  spat io tem- 
poral  intermittertcy. I 1, 2) 

Var ious  models  for the dynamics  of large systems have been 
proposed.  13i Mos t  of  them consist  of  par t ia l  differential equat ions  (PDEs)  
such as the G i n z b u r g - L a n d a u  or  the Swi f t -Hohenberg  equation.  In this 
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framework the problem of the dynamics of fronts is now well-understood 
in the cases where one domain is stable whereas the other is unstable) 4" 51 
Furthermore, models of ordinary differential equations (ODEs) coupled 
via a discrete Laplacian were also introduced as supports for discrete space 
dynamics (e.g., the nonlinear Schr6dinger equation). With these systems, 
the dynamics of interfaces was analytically investigated as a space dis- 
cretization problem, and hence with the assumption of being governed by 
PDEs, and the solutions exhibit good agreement with the experimental and 
numerical data. '6' 71 

In this article, we propose an alternate description of the kink 
dynamics in a (one-dimensional) space-time discrete dynamical system with 
a continuous state, namely the coupled map lattice (CML). ~'9~ The 
simplest kinks, that is, the fronts in bistable systems, are studied. The 
numerical simulations reveal the so-called "propagation failure". For a 
nonsymmetric local dynamics, the fronts are stationary solutions until a 
particular value of the coupling strength is reached, t~~ Above this value, 
the fronts propagate in the lattice with a traveling wave-like behavior. The 
same behavior is observed in the front (between two stable domains) solu- 
tions of PDEs. However, the interfaces in these models are moving for all 
the values of the coupling strength. The difference between both models, 
the effect of pinning, can then be assigned to a space discreteness. This 
effect is also reminiscent of various phenomena in condensed matter 
physics such as the Peierls-Nabarro barrier in the Frenkel-Kontorova 
model of dislocations, t~j 

The main goal of this paper is to prove the existence of the steady 
front solutions in a simple CML, until a particular value of the diffusion 
coefficient is reached, where a (multi) generalized saddle-node bifurcation 
occurs. In condensed matter physics, the effect of pinning is explained using 
a two dimensional area-preserving map which represents the action of a 
dynamical system in space. Following the same idea, we show how it is 
possible to construct explicitly the kink solution. The properties of the 
computed solutions are then examined in order to describe the instability 
which is at the origin of the front propagation. These results are extended 
to another local map and a numerical investigation is proposed in the case 
of a continuous nonlinear map. Finally, we focus our attention on the 
other types of fixed points in these systems. 

1. D E F I N I T I O N S  

The "physical space" of the CML under consideration is chosen to be 
the infinite one-dimensional lattice Z. The phase space is the direct product 
M =  [0, 1] z. A point x ~ M is written x = (xi)~ z- We will give below a 
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Fig. I. The local m a p f  The plot  is for the s i tuat ion where c > ( X l + X 2 ) / 2  and e < e ~  

(see Section 4). 

norm on this phase space in order to give it the structure of a closed sub- 
space of a Banach space. 

The CML is a one-parameter family of mappings: 

F~: M--* M 

X t  F_~ X t + l 

where x '  denotes the state of the system at time t. The model is to be 
representative of the simplest reaction-diffusion systems, that is, when the 
spatial interaction is just the usual (discrete) Laplacian operator. The new 
state at time t + 1 is then given by the following convex linear combination: 

t g " + '  = ( F . x ' ) ; = ( 1 - e ) f ( x , ) + ~ ( f ( x ~ _ l } + f ( x ~ + ~ ) )  Vi~Z  X i 

The parameter e ~ [0, 1 ] is the diffusion coefficient. 
The (nonlinear) local map is taken to be the simplest map of the inter- 

val that is bistable. To be precise, we introduce a multiparameter family of 
piecewise linear mappings (Fig. l ): 

f{,,I : [0, 1 ] ~ [ 0 ,  1] 

x ~  f ( x )  
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such that {p} = {a, a, fl, c, e} and 

f ax+~ if O~x<c 
~x)=Jf(c) if x=c 

~ax+fl if c<x~l  
where 

(1) 

52ac+(~+fl){1--[1-+2ae/(1----a)]'/2} } 
f (c )  = m i n [  2{l_[( l_a)( l_a+ 2ae)]./2} ,ac+fl 

depends on e. Thef (c )  is defined in such a way that, as will be shown later, 
there always exists an unstable kinklike fixed point when the corresponding 
stable one exists. The parameters a, ~, fl and c obey the following 
inequalities: 

O < a < l  

O < ~ < f l < l  

~ < c ( 1 - a ) < f l  

These ensure the existence of two stable fixed points for f :  

X1= ~ and X2= fl 
1 - a  1 - a  

For the sake of simplicity, we def inefso  that these fixed points are the only 
attractors. The choice of this particular map is motivated by its simplicity 
which allows us to handle analytically some aspects of the CML dynamics. 
Notice that we are not dealing with a simpler CML where the local map 
is piecewise constant, that is, a - -0 ,  because in that case, the model reduces 
to a cellular automata model, that is, to a finite set of states. 

It is also possible to compute the kinklike fixed points for a more 
general situation where the local dynamics is continuous: 

f ax+o~ if O<~x<ct 
g(x)=~cx+y if cl<~x<~c2 (2) 

[ 

(ax+fl if c,_<x<~l 

with the conditions 0 < a < 1 and c > 1, which ensure the existence and give 
the stability of the three fixed points (the constants are also fixed so that 
g is continuous): 

1 - -a  < < l - - a  
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The results on the existence and the description of the kink solutions for 
the map g are similar to those obtained below for the map f and we give 
the final results below. However, the failure of continuity o f f  may prevent 
the extension of some results presented here, such as some of the stated 
properties of the trajectories in the phase space. 

In the following, the parameters a, ~t, fl and c in (1) are fixed and the 
study consists in varying the diffusive coefficient e in order to describe the 
symmetry breaking in the set of kink solutions, that is, the front bifurcation 
that generally develops in this particular bistable dynamical system. 

The local map f is a nondifferentiable mapping; more precisely, since 
the loss of differentiability occurs at c, this point plays a central role in this 
transition. The CML mapping is then nondifferentiable (when the state 
vector has a component equal to c) and it is not possible to apply the bifur- 
cation theorems in this case. However, we are able to construct the kink 
solution using the method of transfer matrices and to sketch the mechanism 
for the bifurcation that leads to the propagating front structures. 

2. THE KINK SOLUTIONS 

First, we define a kink to be an orbit { x ' } , ~  of the CML with the 
properties 

x ~ x ~ +  1 Vi 

and 

lim x~ = X "l, lim x~ = X'- 
i ~  - -oo i ~  +o~  

The set of kink K is an invariant set: F~(K) c K. This comes from the fact 
that the local map (1) is an increasing function on [0,1] and that X ~ and 
X 2 are fixed points. 

We now consider the set S(e)  of the steady kink solutions: 

where 

S(e)  = S ' (e)  u { x - ,  x + } 

S'(e) = { x ' e K l x ' = x V t }  

and x -  (resp. x + is the homogenous solution defined by 

x , : - = X  2 Vi (resp. x / + = X  1 Vi) 

Notice that, by definition, the kink solutions x ~ S(e) obey the fixed-point 
equation F , x  = x. 
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Of course, the present study is also valid for the antikink orbits, for 
which one has to consider instead of K the set 

"' ' Vi, lim x~ = X 2, lim xi = XI } A K =  { x ' e M l x i >  xi+ 1 

S'(e) is decomposed into the following disjoint subsets, which we consider 
separately: 

S'(e) = S. ' , . (e)  w S:,(~) 

where 

S:,(e) = { x  �9 S'(e) I Vi X i # C} 

and 

s : , ( e )  = { x  e s ' ( e ) l a j . x j  = c} 

Let T be the space translation operator: 

T: M--* M 

.x" ~-, Tx 

where ( Tx)i-=- xi+ 1 Vi. 
One can check that F, and T commute. Consequently, the subsets 

S~.(e) and S',,(e) are (globally) invariant under the action of T. We shall see 
that each of these subsets is entirely determined by any given element, i.e., 
each is the orbit under T of a single fixed point. If  one also notes that the 
homogeneous fixed points are (pointwise) invariant under the space trans- 
lations, one can deduce the (global) invariance of S(e) under the actions 
of T. 

Let j e Z .  For the sake of simplicity, we denote by x{eSi,.(e) and 
x~, �9 S',,(e) the particular kink solutions with the properties 

and 

-J < . ~'x.,.:i c V i < j  
(3a) 

( x . ( i > c  Vi>~ j 

{ x~,~ < c Vi < j 

X~I.j : C 

x~, i>c Vi> j 

(3b) 
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According to these definitions the set S'(e) is explicitly given by 

,V j = U {.,.',.,-,,} 
j e Z  

since we shall prove that, for each j, there are unique x~ and J ' x,,S (e). 
We now describe the computation of x~ using a two-dimensional area- 

preserving map. First, we introduce the deviation Y=(Y,)~Ez from the 
(local map) fixed points: 

1---a V i < j  
yi  = 

-- J Vi>~j ty2- _ x.,., 

The computation of x~ components then reduces to the problem of deter- 
mining the sequences of vectors of the plane that are related by the linear 
transformations 

and 

where 

(Yi-I)=A,( Yi ) Vi<j-1 (4a) 
Y i Yi  + I 

Yi  / Yi--  l 

A~=((2 /ae) ( l l -a+ae)  -1)0 

is a 2 x 2 hyperbolic matrix. 
According to the boundary conditions for the elements of S's(e), the y 

components must vanish at both + oo and - ~ .  This implies that the vec- 
tors in the relations (4) must be in the contracting (eigen-) direction of A,. 
Therefore the components of y are 

c,, t)~ ~ j - i - I  ~ ' j - l ,  -J V i < j  
Y i =  [ y j ( 2 _ )  i - j  Vi>~ j 

where 2_ is the eigenvalue of A~ that is less than one: 

1 - a + a e - [ ( 1 - a ) ( 1  - a + 2 a e ) ] l / 2  

ae 
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The computation of the constants y~_ ~ and yj is performed by writing the 
affine transformations which corresponds to the connection between the 
sites above c and those below c: 

(yj.~,) = --2(1--a+ae)ae 1 O/\yj-zlI(y'-]']+ ai].---a)o-- 

(yj+]): --~e(1-a+ae) I Y-/ ~ -  a(1--~)  

\ YJ 1 O/\yj-'/ 0 

(5a) 

(5b) 

The composition of the relation (5) leads to a new affine transformation 
between the initial vectors of the maps (4). This new map formally reads 

YJ+ lX)= d (YJ-lX) + T 
Yj / kYj-2/ 

The matrix A and the vector T are obviously deduced from those of rela- 
tion (5). In order to ensure the existence and consequently the uniqueness 
of the solution, we check, using the properties 

YJ+") = yj ( 2 1 ) a n d  ()5-]~=yj_,(21_) 
Yj / \Y j -2 /  

that the vectors 

YJ+') and d(YJ- l~  
Yj \Yj-2/ 

are linearly independent. This calculation leads to the simple condition 
a < 1. Therefore the existence and uniqueness of the kink solution is given 
by the stability of the local map fixed points. The computation effectively 
reduces to the resolution of a system of two linear equations in yj_ ] and 
yj and the components of x~ finally read 

+ a (1 -a ) (1  4 2 _ )  (2 - ) J - ;  Vi<j 
x~'i= fl-o~ (6) 

[ 1 - - ~  a ( 1 - - a ) ( l + 2 _ ) ( 2 - ) / - J + '  Vi>~j 

However, some restrictions on this solution may be imposed by the con- 
ditions (3a). Actually it will be shown below that these limitations are 
crucial, as they give the bifurcation point since (3a) and (6) are compatible 
only if e is smaller than a critical value defined in Section 4. 
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Fig. 2. The stable x~ and the unstable x~ fixed points for e = 0.3. The parameters for f are 
a=0.4,  ~=0.1, fl=0.5, and c=0.65. The horizontal lines stand, respectively, for X t, c, 
and X-'. 

The same method is applied in order to compute the components of 
x,J,. Also in this case the determination of the constants yj_ ~ and yj + ~ gives 
an equation similar to the system (5). Thanks to the particular definition 
off(c) ,  the condition for the existence and uniqueness of the solution is 
also a < 1 and x~ reads 

+a f(c)---f-~--a (A-)Y-/ Vi<j 

x,~.i= i= j 
( fli--a al[ fl --f(c)] Vi>j 

(7) 

A plot of these solutions is given in Fig. 2. Notice that the uniqueness also 
implies that the system (3b) has a unique solution for e<ec where the 
critical value ec will be specified in Section 4. 

For the corresponding antikink structures, the elements of S"(e) can 
be deduced from those of S'(e) by simply applying the symmetries R{ for 
the points x~ and R~ for x,,,'J where 

J - - X  (R~x)j+i-. j-i-] Vi 
and 

J ( R , , x ) j + i - - x j _  i Vi 
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3. THE STABILITY ANALYSIS 

The stability of the fixed points x~ and x,{ is now investigated. We 
show that x j is stable whereas x,{ is unstable; more precisely, the former is 

s 

a saddle. Here again due to the translational invariance along the lattice 
the following results may, with some caution, be extended to any other 
element of S'~.(e) and S',,(e). The study is performed by the computation 
of the perturbation dynamics in a neighborhood of these solutions. This 
approach naturally leads to the description of the stable manifold of x{ and 
x-i,. Noticing that the central manifold is empty the unstable manifold may 
be deduced from the stable one. 

The sets of perturbations under consideration are 

VJ= {PE ~ [ x = x ~ + P ,  x ~ M ,  x i < c  V i < j a n d  xi> cVi>~j} 

in the stability analysis of x~ and 

VJ, I= { P ~ R ~ I x = x ~  + P, xE M, x i < c  W < j,.x)~[O, 1] and x~>c Vi> j} 

for the point .x "j,,. These sets overlap from one fixed point to the other. 
We adopt the usual definition of the local stable manifold, but we may 

express it in terms of perturbations: 

W"toc( xJ. ,,~ - .x J , -  + {PE V~[ ~ ' ~ ( P ) ~ O a s  t ~  +oz and ~'~(P) ~ W, Vt>~O} 

where �9 stands either for s or u, and the perturbation map is defined by 

.~: W. --, R ~ 

P = F (xJ, + P )  - x J, 

Moreover, the stable manifold is 

w.,(.,-J,)= U 

This definition is independent of the original neighborhood. The computa- 
tion of these sets is cumbersome and relatively useless. Indeed, the 
invariant manifolds in the case of maps are generically sets of isolated 
points, and thus are not manifolds in the usual sense. We avoid the 
problem of describing all the trajectories by restricting the initial conditions 
for which the orbits stay in the neighborhoods x[ + V~ and x,{ + V~. 

In the case of the point x "j we obtain ~ ( P ) = J ~ P ,  where J~ is the 
tridiagonal (infinite-dimensional) operator: 
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For x,{ the dynamics is more subtle, as it contains the local map discon- 

VP~ V~ ~ ( P )  = 

tinuity: 

"J~P+q_ if Pi<O 

J,P if Pj=O 

J~P+q+ if Pj>O 

where r/_ and r/+ are the vectors of R z whose only nonvanishing com- 
ponents are the following 

=~�89 i=j+_l 
tl-'~ [(1--e)[ac+cx--f(c)] i=j 

and 

~e[ac + fl-- f(c)] i=j+ 1 
1?+'i= [ i l  --e)Eac +fl--f(c)] i=j  

The stability of x{ is given by the following result�9 

P r o p o s i t i o n  3 .1 .  ~, .i _ . i +  W Wioc(-~.,)-.x, ~.. 

This assertion implies that W~(or ~) is empty, hence n.J. is stable, i.e., it 
is a node. This is the observed solution in numerical simulations. 

Proof. Here we use the notation V~ for x~ + V~. 
s . j  . i  By construction, one has Wtor V,. 

We endow 1t~ z with the inner product ~2~ 

X i  Y i  ( x , y ) q =  Y' forany q > l  qlil 

and the norm II.[Iq=((.,  �9 We consider the Hilbert space Bq= 
{Pc Rzl IlPllq < oo} and I1" II the usual supremum norm for operators. We 
have 

II,~(P)II,~ ~ IIJ, ll. [Ie[lq, VP~Bq 

J~ is a normal operator, hence we get 

[IJ~ll - -  r(J~) --- s u p  I)~] 
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where a(J.) is the spectrum of J~. Using the method developed in ref. 12 
one can deduce that 

where 

A lv = a ( 1 -  e ) + ae cos - ~ - ~  , k = l, N 

is the spectrum of the finite-dimensional approximation of J~, that is, the 
spectrum of the tridiagonal matrix of size N. 

Therefore r (J~ . )=la l=a<l .  This gives the required statement 
~ ( P )  e V~ VP e V~J. ". The first condition for an element of ~ to belong to 
W~oc(x~) has been checked. The second one is also valid when writing 

~,~'(P) = (J~)' P 

from which it clearly follows that J~ ' , (P)~ 0 as t---, + ~ .  Both of these 
assertions imply V~ c " Y W~oc(X,), which ends the proof. I 

We consider the following useful properties for the decomposition 
of VJ,: 

Defini t ion 3.2. P e V J ,  is symmetric (resp. skew-symmetric) if 
Pj+i=Pj_ i  Vi (resp. P j + i = - P j - i  Vi). The symmetric (resp. skew-sym- 
metric) vectors are denoted P, (resp. P,). 

This definition is motivated by the conservation of some symmetries 
under the action of J~; clearly J,.P~. is symmetric and J~.P,  is skew- 
symmetric. 

Write V~= {Pe V~[P=P,} ,  the subset of skew-symmetric perturba- 
tions. The stability of x,~ is given by the following: 

P r o p o s i t i o n  3 . 3 .  ~ J W,o~(X.) =.~,, "j + F~. 

Proof.. By induction. One has VP~ V~ Py=0. Then ~ ( P ) = J ~ P ,  
which is known to have the required properties of being in the local stable 
manifold. 

Moreover, suppose that Y' ,(P)~ V~; then 

I1~'~ + ~(P)llq = II~(~(P))llq ~< IIJ~ll" I I~(e) l lq  

from which we deduce J ~ J Wior where we discard .x, V, c "J in the notation. 
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Fig. 3. Schematic three-dimensional representation of a phase space region. The solid lines 
stand for the stable directions of the (local) stable manifold. The dashed lines represent the 
unstable local manifold, 

The proof that W~'~oc(X'J,) c V,,J is similar to the previous one. We show 
that in order to be (always) decreasing and asymptotically vanishing, a 
perturbation must have a vanishing j th component after each iteration. 
This condition implies the result. II 

Hence we have shown the point x,Jl to be a saddle. A three-dimensional 
schematic representation of the phase portrait of these two fixed points is 
displayed in Fig. 3. The connection to the other points may not be so easy 
because the symmetric and skew-symmetric axes vary from one stable (or 
unstable) fixed point to the other. 

Finally we have the following: 

Proposition 3.4. vP ~ vJ, such that Vt, ff~,(P) ~ VJ,, 
lim,~ +~ II~*~(e')llq~D where 

, j  D = max{ IIx~-- x~llq, IIx~ + '  - x,llq} 

This statement ensures that all suitable orbits evolve toward a point 
in S'(e), and thus cannot reach the homogeneous state. [We have not 
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investigated the cases where the orbit leaves the neighborhood under con- 
sideration, but we conjecture that it will be trapped in a neighborhood of 
another fixed solution in S'(e) and stay inside forever.] 

Proof. From the proof of Proposition 3.1 the case P e V~ J obeys the 
statement, since for such perturbations, the dynamics is simply given by the 
product with the contracting matrix J~. In this situation, the limit in norm 
is zero and the asymptotic state is x~. The case P e Y{ also follows from 
Proposition 3.3 by the same argument and the final state is x,~. 

Assume that P c  V,~ is such that P~>0 Vi (resp. P~<0 Vi). Then for 
IIJ~ I] < 1, the asymptotic state for such a perturbation is given by 

lim ~ '~(P)= J'~q+ = ( I d - J ~ ) - '  pl+ - x ~  x,,J 
t = 0  

[ resp. 

lim ,~'~(P) = ( Id-J~)  -z 11_ = ~x J+l., - x  J] 
t ~ ,+. c.t5 

Id means the identity operator in V{. Consequently, the norm limit is one 
of the values of D depending on the sign of the P components. 

Now for any P ~ V,~, one has in a componentwise sense 

t - - ]  t - - I  

( J~ )"P+ Z J ~ q - < ~ ' ~ ( P ) < ~ ( J , ) " P +  ~, j,q+k Vt>0 
k ~ O  k = O  

This inequality implies the asymptotic boundedness. | 

4. THE CONDIT IONS FOR THE EXISTENCE OF THE 
KINKLIKE FIXED POINTS AND THE GENERALIZED 
SADDLE-NODE BIFURCATION 

The kinklike fixed points have been computed assuming the conditions 
(3). However, these assumptions have to be checked afterward as the 
expressions (6) and (7) for the components of x{ and x{ mainly depend on 
e. Some properties of the components (6) will allow us to claim a criterion 
for the existence of the fixed interfaces in our CML. One can check that de 
expressions (6) obey the following. 

Proposition 4.1. Vi<j  (resp. Vi>~j) the components of x~ are 
increasing (resp. decreasing) functions of the coupling strength e. 

Let 

K =_c( I - a )  -o~ _ f l - c (  l - a )  2(1 - a )  K~.p(1 --aK~, p) 
fl-0c ' Kp= f l -c t  ' e ~ p -  (1 -2aK~.p) 2 " 
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The following are true: 

J > c  V~. > 8a Xs, j -  1 

Ve > ~# xsJj < c 

The proof is accomplished with simple calculations. 
This proposition implies that the fixed points x~ no longer exist for 

e > ec = min{e,,  ep}. Moreover, the image of c has been constructed in such 
a way that the points x,{ also no longer exist when e > e~. This is because 
the problem of the transfer matrices for the saddle points has no solution 
for this range of diffusive coefficient as f (c )  = ac + ft. 

In other words, we have described a (multi) generalized saddle-node 
bifurcation that occurs for all the kinklike fixed points in our bistable 
CML. This bifurcation can be viewed as a transition from a global transla- 
tional symmetry invariance in the set of fixed interfaces 

.J J {x- ,x  +} < ~  s( , )= U {~,,x,,} u vo<~ 
j e Z  

to a pointwise translational symmetry of 

S ( e ) = { x - , x  + } Vc~<~<l 

The resulting attractors for a kinklike initial condition may be one of the 
homogeneous solutions when e > ec. Indeed, the analysis of the perturba- 

_ i at e = ec may give an insight tion dynamics near a fixed point x j = x ~ -  x ,  
into this property. 

Let c > ( X I +  X'-)/2; then ec =ep.  Note that the case of equality is the 
symmetric case where the fixed fronts always exist (that is, for any 
e e [ 0 , 1 ] ,  and that the case c < ( X  ~ +XZ)/2 is achieved in the same way. 
The dynamics for a perturbation of the fixed point x j reads 

~'S~ P if Pj~>O 
~ ( P ) = ( J s  2_ if P j<O 

where v j_ is the vector r/_ computed at ec: 

(~L), I 
O, 

= � 8 9  

(.(1 -~ ) (~ - f l ) ,  

i < j - - 1  or i > j +  1 

i=j+__l 

i = j  
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Every perturbation with positive components is damped and the 
asymptotic state is x j. However, any perturbation with negative com- 
ponents is not damped and as time evolves it approaches the value [ see the 
proof (3.4)] 

lim ,~'~(P)=xJ+I-x i 

The asymptotic state of the system is .v j+~ in this case. Therefore any 
kinklike initial condition, that is, any initial condition in the basin of 
attraction of one of the x j, evolves toward the "right" (from the lattice 
point of view) and reaches one of the fixed points asymptotically. By 
contrast, any antikinklike initial condition may propagate to the "left", as 
can be seen from a similar perturbation analysis of points S"(e) at e = ec. 
Hence, according to the sign of the quantity c- (X~+ )(2)/2, one might 
decide on the direction of the front and the antifront propagation for the 
coupling above the critical value. 

5. THE TRANSIT ION FOR CONTINUOUS LOCAL MAPS 

In this section, we describe the steady-propagating front transition for 
continuous local maps. The first situation deals with the map g [ defined in 
(2) ]; then we consider numerically the case of a differentiable mapping. 

If the local map is chosen to be the map g, the same analysis as above 
can be done, that is, the calculation of the points x~ and x , ,  "j the analysis 
of stability, and the bifurcation. In this case, the x~ components are also 
given by the system (6), whereas we only consider the unstable solution 
with one component in the interval ]c~, c2[. One can check that x,{ exists 
and is unique. The condition for the existence of the steady front is also 
e < e c - m i n { e = ,  ep}, where e= and ep are defined as in Proposition 4.1 but 
with different values of K= and Kp: 

Cl(1 - a ) - ~  f l -  c2(1 - a )  
K= - fl _ ~ and Kp = fl - ct 

The stability analysis of x~ also implies that it is a stable point. The 
investigation of the perturbation dynamics is not so simple for ,x'~ but again 
it is possible to show that it is a saddle. This result is confirmed by the 
numerical computation of the associated linear dynamics spectrum. Hence, 
the CML dynamics also reveals a generalized saddle-node bifurcation in 
this case. 

One step further in the complexity of the local dynamics is to examine 
a differentiable bistable map, a model that is closer to a more realistic 
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p a r a m e t e r s  a r e / z  = 1.3 ,  c = 0 . 0 2 ,  a n d  e = 0 . 1 1 9 3 .  

situation. Here we have chosen the (nonsymmetric) cubic map h(~. c)(x)= 
c +/zx( 1 -x2 ) .  For suitable values o f #  and c, h(,, c) is also bistable. In this 
context, we have no idea how to compute explicitly the components of 
the fixed point. Indeed, the method of transfer matrices is no longer 
appropriate because the relation between the neighbors is quadratic. 

However, due to the bistable feature, the CML with the map h<~,.c) 
may reveal the same bifurcation as in the former cases. In order to check 
this claim, we have computed numerically the spectrum of the Jacobian 
associated with the kink fixed point. The result is presented in Fig. 4, where 
it clearly appears that the greatest Jacobian eigenvalue occurs at one for 
e=0.1193, the mark of a saddle-node bifurcation in differentiable cases. 
This value of the coupling exactly corresponds to the value at which the 
front propagates in the lattice, as can be seen from the simulations. Notice 
the interesting and somewhat unexpected result (see Fig. 4) that the 
spectrum shows an isolated eigenvalue that crosses the unit circle and is 
isolated from the remainder of the spectrum by a uniform gap. 

6. THE OTHER FIXED POINTS 

In this section, we give an insight into the other types of steady 
solutions inherent to the CML under consideration, that is, with the local 
map (1). The fixed-point equation is expressed as 

G(e, x) = 0 (8) 

822/82/3.4~ 
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with G ( e , x ) = F , x - x ,  and we denote by 6e(e) the set of solutions 
depending on the coupling strength. We endow the extended phase space 
R z with the usual norm: 

Ilxll o~ = sup Ix,I 
i e Z  

and from now on we consider the Banach space Bo~ = {x~ Rz[ Ilxllo~ < oo}. 
For e = 0 the dynamics consist of a set of uncoupled maps (Fox')i =f(x~); 
this yields 

5~ {x~ [0, 1]z lVix~=X ~ or X'-} 

which means that the system has the property of spatial chaos/TM 
The continuation of the fixed points into the coupled case is guaran- 

teed by the application of the Implicit Function Theorem to Eq. (8) at each 
point Xo of 50(0)/~4' ~5) We describe now the conditions for the use of this 
theorem and its consequence. 

U(O, xo)e(R,  I' I)xBo~ be an open neighborhood of (0, Xo) such Let 
that: 

(i) 
on U(0, 

(ii) 

The (infinite) Jacobian DG(0, Xo) exists as a Frechet derivative 
Xo) and is invertible. 

G and DG are continuous at (0, Xo). 

The conclusion is then that there exists a number 6 such that for every 
e satisfying [el < 6 there is exactly one x(e) for which G(e, x(e)) = 0. Note 
that, thanks to the linearity o f f ,  the theorem also gives an exact bound 
on x(e). Furthermore, as G(e, x) is continuous in a neighborhood of (0, Xo), 
x(e) is continuous in a neighborhood of 0. 

Here we choose 

where 

U(0, x0) = ]0, 6[ • I-[ I, 

/ /=  {]0, c[ if (Xo)i=X l 
] c , l [  if (Xo)i= X 2 

The main condition for the continuation of Xo is (i); thus the fixed 
points may exist as long as F~ is differentiable. This condition fails when (at 
least) one component ofx(e) is c. Hence, we may obtain a condition for the 
existence of any fixed point similar to the one computed for the kink solu- 
tion (Proposition 4.1). The bound 6 depends on the particular point Xo, 
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but it is possible to obtain a uniform bound for any solution3 ~4) Moreover, 
not only is x(e) unique, but since F~ is contracting on U(0, Xo), there is no 
other possible fixed solution in this set. Note also that the Implicit Func- 
tion Theorem can also be applied in the case of a differentiable local map. 
In such a case, G(e, x) is always differentiable and the fixed points exist as 
long as DG(e, x(e)) is invertible, that is, until the spectrum of DF~ lies 
entirely within the unit circle. 

Finally, as in the case of the front, the critical values of e (for which 
the solution disappears) are given for two examples of the CML defined 
with the map ( 1 ). This is done by generalizing the transfer matrix technique 
and by checking afterward the conditions for the existence of the solution. 
Here we suppose again for the sake of definiteness that c > ( X  1 + X2)/2 (the 
opposite case can be handled in a similar manner). For the one-point 
domain solution which is defined by 

3j such that xj > c and Vi v~j x i < c 

the critical value is 

e~ = ( 1 - a) Kp(2 - aKp) 
2( I -- aKp)'- 

where Kp is given in (4.1), This solution is (numerically) the less stable 
fixed point in the structural sense, that is, the first solution to disappear 
when one increases e from 0. For the (spatial) 2-periodic point 

we have found 

Vi X2i> C and X 2 i +  I < C 

e~ = (1 - a )  K/j 
l ; gg  

and we obtain the following ordering of the critical values: 

t t! 

from which we conjuncture that the kink solution has the largest transition 
value. 
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